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RESUMO
A análise quantitativa de imagens de tomografia computadorizada (QCT) emergiu como uma ferramenta significativa 
na avaliação de doenças pulmonares, oferecendo vantagens comparáveis aos testes de função pulmonar tradicionais 
em diagnóstico, estadiamento e prognóstico. Seu benefício único reside na detecção de danos pulmonares antes que as 
mudanças sejam evidentes em testes de função pulmonar ou mesmo em sintomas clínicos. Além disso, a QCT auxilia na 
identificação de diferentes fenótipos de doenças, o que é crucial para o tratamento personalizado e a realização de estudos 
comparativos. Isso é especialmente valioso, pois minimiza a variabilidade subjetiva vista na análise qualitativa. Esta revisão 
aprofunda-se nos aspectos técnicos da análise de QCT, destacando como essa modalidade de imagem é instrumental no 
endereçamento de questões clínicas no manejo rotineiro de pacientes com diferentes condições pulmonares. Ela sublinha 
o papel da QCT em aprimorar o entendimento e tratamento dessas doenças, melhorando assim o cuidado com o paciente.
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ABSTRACT
Quantitative computed tomography (QCT) has emerged as a significant tool in evaluating lung diseases, offering advantages 
comparable to traditional pulmonary function testing in diagnosis, staging, and prognosis. Its unique benefit lies in detecting 
lung damage before changes are evident in pulmonary function tests or even in clinical symptoms. Additionally, QCT aids in 
identifying different disease phenotypes, which is crucial for personalized treatment and conducting comparative studies. 
This is especially valuable as it minimizes the subjective variability seen in qualitative analysis. This review delves into the 
technical aspects of QCT analysis, highlighting how this imaging modality is instrumental in addressing clinical queries in 
the routine management of patients with several lung conditions. It underscores QCT's role in enhancing the understanding 
and treatment of these diseases, thereby improving patient care.

KEY WORDS
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DENSITOMETRY AS A QCT METRIC 
OF LUNG DISEASES 

Chest CT-scan images are created using 
multidetector CT (MDCT) technology. In these 
images, each voxel (a 3D pixel) represents an 
average linear attenuation value of lung tissue. 
These values are measured in Hounsfield Units 
(HU), which range from -1000 HU (pure air) to 
+3095 HU on 12-bit CT scanners. Specific HU 
values are given for different substances: -1000 
HU for air, 0 HU for pure water, 40 HU for blood, 
and +1000 HU or higher for cortical bone. 

Analyzing the linear attenuation values in 
lung voxels is key for QCT assessments of lung 
tissues and other types. Various QCT metrics for 
obstructive lung diseases are available, such as the 
percentage of lung tissue with a density less than 
-950 HU on a total lung capacity (TLC) CT scan, 
indicating emphysema23, and the percentage of 
lung tissue with a density less than -856 HU on a 
functional residual volume/residual volume (FRC/
RV) CT scan, suggesting air trapping and possibly 
small airway disease24,25.

At full inspiration MDCT, normal lung atte-
nuation usually ranges from -950 to -700 HU26, 
and the proportion of lung falling within this range 
is referred to as the Normal Lung Index (NLI)27. 
Meanwhile, areas showing higher attenuation 
between -700 and +50 HU are linked to regions 
of fibrosis and/or alveolar infiltration28,29.

In densitometry analysis, density curves re-
presenting the percentage of pixels in various 
lung attenuation categories (low, normal, high) 
are generated, and basic statistical measures like 
mean attenuation, skewness, and kurtosis help 
differentiate the curve shapes between index 
patients and healthy individuals (Figure 2). 

It’s important to emphasize that the reliability 
of these QCT thresholds and metrics is contingent 
upon the precision and accuracy of measurements 
taken for each individual or patient. QCT demands 
greater precision compared to the conventional 
qualitative lung imaging analysis, as the quantitative 
values can fluctuate based on lung volumes, CT scan 
settings, and the calibration of the CT scanner30.

INTRODUÇÃO

Quantitative computed tomography (QCT) 
imaging offers a non-invasive method to directly 
visualize, characterize, and quantify lung structu-
res, helping to understand the underlying mecha-
nisms of pulmonary diseases1–3. Specifically in lung 
parenchyma applications, it utilizes various quan-
titative techniques to assess abnormal and normal 
lung parenchyma attenuations. These include 
threshold-based and density-based measures, 
statistical analysis using histograms, and texture 
analysis3. Additionally, QCT can integrate these 
features with artificial intelligence for advanced 
lung parenchyma and airway segmentation4–6 

and classification7–9, enhancing its diagnostic and 
analytical capabilities2,10.

Deep learning models, notably convolutional 
neural networks (CNNs), have demonstrated su-
perior accuracy in identifying and characterizing 
thoracic abnormalities that might occasionally 
escape the human gaze11–13. By harnessing the-
se models, radiologists might achieve quicker 
diagnoses, thus facilitating prompt therapeutic 
interventions14–17. Moreover, the application of 
AI in chest CT interpretation has shown potential 
in minimizing inter-reader discrepancies, a long-
-standing challenge in the field of radiology18,19.

Emerging studies have underscored the 
transformative potential of AI in enhancing the 
sensitivity and specificity of disease detection on 
chest CT17. Furthermore, AI's capabilities extend 
beyond mere detection. It is now employed in 
risk stratification thereby streamlining patient 
management strategies16,20,21.

Yet, while AI's role in chest CT imaging seems 
promising, it is crucial to approach its integration 
with caution15,22. Reliability, transparency in algo-
rithmic functioning, and its real-world validation 
remain paramount. This article delves into the te-
chnical aspects of QCT analysis, highlighting how 
this imaging modality is instrumental in addressing 
clinical queries in the routine management of 
patients with several lung conditions.
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A new CT image reconstruction technique, 
known as iterative reconstruction, has been de-
veloped to lower radiation exposure for subjects 
or patients. This method, introduced by various 
CT manufacturers, has gained wide acceptance 
in the qualitative conventional lung imaging field. 
While there were initial concerns about potential 
inaccuracies in CT number measurements due to 
these new techniques, some studies indicate these 
concerns, despite true, might not be clinically re-
levant30,31. Since, low-dose CT screening for lung 
cancer is becoming part of clinical practice, it is 
important to recognize that most mean emphy-

sema indexes increased on the low-dose scans, 
but the mean difference at all thresholds was less 
than 3% as previously reported32.

Finally, another significant limitation of den-
sitometry based QCT is its restricted capability in 
differentiating lung abnormalities that have similar 
CT attenuation values. This includes challenges 
in telling apart emphysema from airspace cystic 
lesions (Figure 3), as well as differentiating reti-
culated areas from ground-glass opacities and 
consolidation. This difficulty arises from the over-
lapping of attenuation categories, which is evident 
in the histogram shown in Figure 4.

Figura 1. Categories of pulmonary parenchyma voxels based on X-ray attenuation levels using thresholds. These are: 1) Low Attenuation 
Areas (LAA < 950 HU), 2) Normal Attenuation Areas (- 950≤NAA<-700 HU), and 3) High Attenuation Areas (-700≤HAA<+50 HU). Hounsfield 
Units (HU) are used as a scale for X-ray attenuation, with -1000 HU indicating no attenuation (air, appearing black on CT) and +1000 HU 
indicating complete attenuation (bone cortex, appearing white on CT). Density histograms showing pixel percentages in these categories 
are created after a thoracic radiologist manually identifies each attenuation pattern. These categories often represent low attenuation areas 
like emphysema (Emph, red), normal lung parenchyma (Well, blue), and high attenuation areas, which are typically ground glass opacities 
(GGO, yellow), crazy paving and linear opacities (CP/LO, orange), and consolidations (Cons, gray).
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Figura 2. a, b A coronal CT scan with a lung window and lung density histogram for a COPD patient shows a median lung attenuation of 
−956 HU and an emphysema index (ranging from −1024 to −950 HU, indicated in red) of 46.5%. c, d In a coronal CT scan and lung density 
histogram of a healthy individual, the median lung attenuation is noted at −882 HU with a normal lung index of 90.2% (spanning −950 HU 
to −700 HU, depicted in green). This demonstrates a notable peak (kurtosis) and an asymmetrical curve, typically skewed to the right. e, f 
The coronal CT and lung density histogram evaluation of a severe idiopathic pulmonary fibrosis (IPF) patient reveals a markedly low median 
lung attenuation of −611 HU, diminished kurtosis (less pronounced peak), a skew towards more symmetric distribution around higher values, 
and a high-attenuation area percentage (ranging from −700 to +50 HU, shown in blue and light green) of 55,2%.

Figura 3. Axial CT scan image obtained in a 54-year-old woman shows multiple low-attenuation areas in a patient with a clinical diagnosis of 
lymphangioleiomyomatosis (LAM) and in a 53-year-old man with pulmonary clinical diagnosis of emphysema (Emph). Pink arrows indicate air 
space cysts areas, defined appearing as rounded, low-density (dark) areas due to their air content. The walls of these cysts are thin, and usually 
predominate in the middle and lower lung thirds. Despite these cysts can vary in size they are typically surrounded by normal. Red arrows indicate 
a moderate centrilobular emphysema defined as many well-defined centrilobular lucencies, occupying more than 5% of any lung zone. In the 
right side, each respective image colored with each class identified. (Emph, red), normal lung parenchyma (Well, blue), and high attenuation areas, 
which are typically ground glass opacities (GGO, yellow), crazy paving and linear opacities (CP/LO, orange), and consolidations (Cons, gray)33.
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ARTIFICIAL INTELLIGENCE 
CONTRIBUTION TO QCT METRIC OF 
LUNG DISEASES

Artificial intelligence (AI), by leveraging 
advanced algorithms, especially Convolutional 
Neural Networks (CNNs), has demonstrated a 
remarkable prowess in detecting a plethora of 
chest abnormalities. CNN texture-based analy-
sis employs second-order statistical methods to 
extract various morphological features derived 
from imaging. This approach includes techniques 
like gray-level co-occurrence matrix (GLCM) and 
run-length matrix (RLM), which consider the spa-
tial interrelations of pixels or voxels within their 
local contextual framework34,35.

These textural datasets frequently integrate 
with machine learning algorithms to facilitate 
segmentation and classification of CT pulmo-
nary disease patterns. Two prominent algorithms 
include the Computer-Aided Lung Informatics 
for Pathology Evaluation and Rating (CALIPER), 
devised at Mayo Clinic, which quantifies lung 
parenchyma into five distinct patterns using tex-
ture-based analysis, and the data-driven textural 
analysis (DTA) developed by the National Jewish 
Hospital group, adept in quantifying the degree 
of pulmonary fibrosis3,36. In recent developments, 
certain software solutions have acquired registra-

tion from ANVISA, positioning them for potential 
application in clinical practice in Brazil, including 
core:line (South Korea) and HealthSCAN (Medi-
tec, Brazil).

As a practical illustration, it can be observed 
that through texture analysis with CNN, differen-
tiation between emphysematous areas and air 
space cysts is feasible, as well as the assessment of 
the regional distribution of these lesions (Figure 5).

Finally, it is important to highlight that QCT 
offers a distinct advantage over Pulmonary Func-
tion Tests (PFTs) in the context of diffuse lung 
disease. While PFTs are adept at identifying phy-
siological impairments, QCT excels by furnishing 
information on morphological alterations in the 
lung parenchyma, coupled with their spatial arran-

Figura 4. Density histograms showing pixel percentages in these 
categories are created after a thoracic radiologist manually identifies 
each attenuation pattern. These categories often represent low 
attenuation areas like emphysema (Emph, red), normal lung 
parenchyma (Well, blue), and high attenuation areas, which are 
typically ground glass opacities (GGO, yellow), crazy paving and 
linear opacities (CP/LO, orange), and consolidations (Cons, gray). 
Note the overlapping of each attenuation category.

Figura 5. Summary glyphs derived from three-dimensional 
imaging data (left column) for a representative control case 
of lymphangioleiomyomatosis (LAM) and cases of pulmonary 
emphysema with non-chronic obstructive pulmonary disease 
(Non-COPD) and with mild, moderate, severe and very severe 
COPD based on GOLD Classification. RU, right upper lung; LU, 
left upper lung; RM, right middle lung; LM, left middle lung; RL, 
right lower lung, and LL, left lower lung. Emphysema (Emph, 
red), airspace cists (Cysts, pink), normal lung parenchyma (Well, 
blue), Ground-glass opacities (GGO, yellow), crazy-paving/reticular 
opacities (CP/LO, orange) and consolidation (Cons, gray). Images 
derived from HealthSCAN software (Meditec, Brazil).
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gement. This is particularly beneficial in early-stage 
disease, where PFT may lack the sensitivity to 
discern initial aberrations34. Consequently, QCT 
serves as a valuable adjunct to PFT in the assess-
ment of patients with chronic lung disease.

In summary, AI QCT is being used for: 
• Automated Pattern Recognition: Using 

CNNs and other deep learning models, AI can be 
trained to identify the subtle and often complex 
patterns of ILD and pulmonary emphysema HRCT. 
This includes recognizing ground-glass opacities, 
reticulations, honeycombing, and traction bron-
chiectasis with increased accuracy37–40.

• Quantitative Analysis: Beyond mere 
identification, AI models can quantify the extent 
of lung involvement, providing objective metrics 
like lung volume affected, percentage of fibrosis 
and/or pulmonary emphysema, and disease pro-
gression over time. This quantitative approach aids 
in monitoring disease progression and response 
to therapy16,28,41.

• Risk Stratification: By analyzing the pat-
terns and extent of disease, along with clinical 
data integration, AI can provide risk stratification, 
offering insights into potential disease progression 
rates and outcomes42–44.

• Differential Diagnosis: Given the diver-
se nature of ILD, distinguishing between its various 
subtypes is often challenging. AI models can aid 
in this differential diagnosis, recognizing patterns 
specific to conditions like idiopathic pulmonary 
fibrosis (IPF), nonspecific interstitial pneumonia 
(NSIP), or sarcoidosis45,46.

• Treatment Response Monitoring: By 
providing objective metrics, AI can monitor the 
response to treatment, allowing clinicians to adjust 
therapeutic strategies based on quantifiable data, 
such as reduction in fibrotic regions or improve-
ment in ground-glass opacities47,48.

• Integration with Pulmonary Function 
Tests (PFTs): AI-driven algorithms can correla-
te imaging findings with PFTs results, offering a 
comprehensive view of both the structural and 
functional aspects of lung compromise in chronic 
lung diseases49. 

• Predictive Analytics: Using vast datasets, 
AI models can predict potential disease progression, 
anticipate exacerbations, or even suggest the likely 
success of various therapeutic interventions based 
on individual patient profiles50,51.

In summary, AI is significantly enhancing the 
capabilities of clinicians in the realm of chronic 
lung diseases, not only by providing accurate 
and objective assessments but also by offering 
predictive insights that can guide management 
strategies. Recent studies also suggest the gro-
wing importance of QCT biomarkers in evaluating 
acute and chronic pulmonary diseases, providing 
insights into disease extent, changes in response 
to treatments, and prognostication for patients.

While these advancements are transforma-
tive, the clinical implementation of AI tools man-
dates rigorous validation, ensuring they maintain 
high sensitivity and specificity while minimizing 
false positives. As AI continues to weave its way 
into radiology, the fusion of machine intelligen-
ce and human expertise promises a new era of 
precision, efficiency, and patient-centric care.

CONCLUSIONS

While these advancements are transforma-
tive, the clinical implementation of AI tools man-
dates rigorous validation, ensuring they maintain 
high sensitivity and specificity while minimizing 
false positives. As AI continues to weave its way 
into radiology, the fusion of machine intelligen-
ce and human expertise promises a new era of 
precision, efficiency, and patient-centric care.
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